## What's Missing in Environmental (Self-)Monitoring: Evidence from Strategic Shutdowns of Air Quality Monitors

September 2021

Yingfei Mu (JHU) Edward Rubin (Oregon) Eric Zou (Oregon)

## Motivation

- Environmental regulations rely on the regulated to record compliance monitoring data
  - Cap-and-trade participants are charged with monitoring emissions
  - States operate pollution monitoring stations to show compliances to federal standards
  - Country self-monitor GHGs to demonstrate adherence to climate commitments
- Self-monitoring is a common practice when federal regulators face high monitoring requirements
  - Police officers are responsible for turning on/off body cameras
  - Doctors catalog what happens in the operating room
  - Tax liability assessment sometimes relies on self-reported income and expenses
- This paper
  - Studies U.S. Clean Air Act's outdoor air quality monitoring rule
  - Shows federal EPA's tolerance for gaps in monitoring data may have incentivized strategic timing of state gov's compliance monitoring

#### FORT LEE SEPTEMBER TRAFFIC SNARL

The change in access lanes to the George Washington Bridge toll plaza, caused traffic tie-ups on every street in Fort Lee and spreading south to Edgewater.









Source: The New York Times





Source: New Jersey Department of Environmental Protection; Google



UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 290 BROADWAY NEW YORK, NY 10007-1886

#### FEB 2 8 2014

Mr. Jeff Ruch Executive Director Public Employees for Environmental Responsibility 2000 P Street NW, Suite 240 Washington, DC 20036

Dear Mr. Ruch:

This is in response to your letter dated January 31, 2014 to the U.S. Environmental Protection Agency's Office of the Inspector General requesting that the EPA investigate the operational status of air monitoring equipment during the lane closures of the George Washington Bridge from September 9, through September 13, 2013. Your letter was referred to EPA Region 2 for a response.

The EPA has conducted a review of the air quality monitoring information and data in the EPA's Air Quality System database for monitors located in the vicinity of the George Washington Bridge from September 7 to September 14, 2014. Based on this review, the EPA has concluded that the ambient air quality monitoring network equipment in question was operated by the New Jersey Department of Environmental Protection in accordance with the EPA's rules. Details of the EPA's review are enclosed. In addition, the measured air quality concentrations were in compliance with the EPA's National Ambient Air Quality Standards during this time period.

If you have any further questions, please contact me at 212-637-5000 or have your staff contact Richard Ruvo, Chief of our Air Programs Branch at 212-637-4014.

Sincerely,

Waith & Emck Judith A. Enck

Enclosure

cc: Bill Wolff, PEER Douglas Zmorzenski, OIG Clay Brown, OIG

> Internet Address (URL) • http://www.epa.gov cyclable • Printed with Vegetable Oil Based Inks on Recycled Paper (Minimum 59% Postconsumer content)

#### Source: U.S. EPA

#### Jersey City, NJ Site at 355 Newark Avenue is 10 miles from the Bridge

- PM<sub>25</sub> sampler collecting on a daily schedule
  - No data collected from September 7, 2013 to September 13, 2013 due to reported equipment malfunction
- PM<sub>2.5</sub> sampler (for quality assurance purposes) collecting on a one in six day schedule
   Data collection
  - On September 7, 2013, 24 hour average was 7.5 ug/m<sup>3</sup>
  - On September 13, 2013, 24 hour average was 5.2 ug/m<sup>3</sup>
- PM25 sampler collecting continuously
  - o Data collection
    - On September 7, 2013, 24 hour average was 5.9 ug/m<sup>3</sup>
    - On September 8, 2013, partial data was collected, average was 6.8 ug/m<sup>3</sup>
    - No data September 9, 2013 due to reported wireless router malfunction
    - No data September 10, 2013 due to reported wireless router malfunction
    - On September 11, 2013, partial data was collected, average was 26.3 ug/m<sup>3</sup>
    - On September 12, 2013, 24 hour average was 17.0 ug/m<sup>3</sup>
    - On September 13, 2013, 24 hour average was 2.3 ug/m<sup>3</sup>

### Why Do People Worry about This Incident?

- Reflects an underappreciated challenge for environmental selfmonitoring
  - Incentive: states self-monitor air quality compliance, and suffers regulatory penalties when their own data suggest violation of EPA air quality standards ("NAAQS")
  - Discretion: up to 25% missing data permissible per quarter
  - Ability: states' weather department often run air quality forecasting
  - No adequate detection mechanism: regulator ignores missing data when assessing compliance

## Why Do People Worry about This Incident?

- Reflects an underappreciated challenge for environmental selfmonitoring
  - Incentive: states self-monitor air quality compliance, and suffers regulatory penalties when their own data suggest violation of EPA air quality standards ("NAAQS")
  - Discretion: up to 25% missing data permissible per quarter
  - Ability: states' weather department often run air quality forecasting
  - No adequate detection mechanism: regulator ignores missing data when assessing compliance
- Do local governments skip monitoring in expectation of a looming air quality deterioration?

# This Paper

- <u>Goal:</u> Provide a framework to detect strategic shutdowns of pollution monitors
- <u>Idea:</u> Look for abnormal missing patterns around <u>pollution alerts</u>
  - E.g. "High Pollution Advisory", AZ
  - Alerts are based on state gov's own pollution forecasting (expectation)
  - Test if monitors' sampling rates fall around alert days
- <u>Large-scale inference:</u> test JCF monitor first, then apply the method to over 1,300 monitors in counties with similar alert programs
  - Address false discovery with multiple-testing tools
  - Come up with a list of "interesting" monitors that responded to alerts
- Policy: Discuss imputation methods that may deter strategic shutdowns

#### **Primary Data Sources**

- EPA's ground monitoring data 2004-2015
  Daily Summary File: pollution value for each monitor-day
  Focus on "criteria" pollutant monitors (PM2.5, PM10, O3, NO2, SO2, CO)
- 2. AirNow.gov compilation of air pollution alerts 2004-2015
  o Ex: "Spare the Air" (CA Bay Area), "High Pollution Advisory" (AZ)
  o 33,357 alerts issued by 342 jurisdictions (city, county, or metro areas)
  o Aggregate to county-day events
- Final study pool includes 1,359 monitors
  - These are continuous monitors scheduled to sample everyday
  - Span 167 counties that have pollution alert programs

#### Outline

- Institution
- Main Results
- Discussion
  - Mechanisms?
  - Economic importance?
  - Policy alternatives?

### The National Ambient Air Quality Standards

- .. or NAAQS: safety standards for outdoor air quality established under the U.S. Clean Air Act
  - E.g., most recent standards for PM2.5: 3-year avg mean ≤ 12 ug/m3; 3-year daily 98<sup>th</sup> percentile ≤ 35 ug/m3
  - Standards exist for "criteria pollutants": Particulate matter (PM2.5, PM10, Pb) and trace gas (O3, NO2, SO2, CO)
- EPA uses states' submitted monitoring data to categorize jurisdictions (mostly counties) into three groups
  - "Nonattainment": violating the standards
  - "Attainment": adhering to the standards
  - o "Unclassifiable": not sufficient data; *de facto* "attainment" (more later)

### The National Ambient Air Quality Standards

- "Nonattainment" areas face substantially elevated regulatory scrutiny
  - State needs to develop a State Implementation Plan (SIP) that details regulatory actions: adoption of expensive pollution abatement tech ("LAER") and emission limits
- Large fiscal burden to the state and local governments in addition to direct compliance costs
  - Lost manufacturing sector productivity (<u>Greenstone, List, Syverson, 2012</u>), labor market transition costs (<u>Walker, 2013</u>), etc.

### **Rules for Incomplete Monitoring**

- To demonstrate compliance with NAAQS, states' monitoring data must satisfy completeness goals
  - Varies across pollutants, but the typical requirement is for each monitor to take at least 75% of required samples per quarter of the year

## **Rules for Incomplete Monitoring**

- What does the regulator do if states' data fall below the completeness requirement?
  - Calculate compliance statistics (annual mean, 98<sup>th</sup> percentile, etc.) using the incomplete data *anyway*
- If calculated statistic < regulatory threshold: county is "unclassifiable" (*de facto "*attainment")
- If calculated statistics > regulatory threshold: assign the county with "nonattainment" status
  - EPA has authority to do this with *very* limited data: as few as 11 samples per quarter are sufficient to designate nonattainment
  - If fewer than 11 samples are available, can use alternative data such as "nearby concentrations"

## **Rules for Incomplete Monitoring**

- Implication: the (75%) completeness goal *per se* is not subject to gaming
  - A violating area cannot bring itself out of nonattainment simply by reducing sampling rate below 75% (because EPA can use very few data points to determine nonattainment)
  - For a non-violating area, makes little difference if its sampling rate is above or below 75%
- <u>Point of this paper</u>: because the regulator uses the <u>incomplete data</u> directly to calculate compliance statistics, strategic response *can* arise when local monitoring agencies skip high-pollution days to water down the average (or whatever relevant statistics) of measured pollution

#### Outline

- Institution
- Main Results
- Discussion
  - Mechanisms?
  - Economic importance?
  - Policy alternatives?

## Event Study (one monitor)

- Describe how we test for strategic shutdowns for a single monitor, using the Jersey City Firehouse (JCF) monitor as an example
- Event study estimation equation:

CaptureRate<sub>t</sub> = 1 - 1(missing PM2.5 data)<sub>t</sub> =  $\sum_{\tau \in [-30,30]} \beta_{\tau} \cdot 1(t = \tau) + \epsilon_t$ 

- Jersey City issued 21 alerts during our study period
- We look at JCF monitor's capture rate in the 30 days before and 30 days after an alert, forming an event study dataset of 21\*61=1,281 observations
- <u>Coefficients of interest:</u>

 $\hat{\beta}_{\tau}$  = the capture rate  $\tau$ -day relative to the alert day

#### **Event study:** Do monitors shutdown around pollution alerts?

Data capture rate of the JCF monitor around pollution alerts:



Dashed line shows 3-day moving average. Total 21 alert events.

### Inference (one monitor)

- <u>Inference goal</u>: test whether the  $\hat{\beta}_{\tau}$ 's have lower values around  $\tau = 0$ , i.e., more missing data near pollution alerts
- <u>Define test statistic:</u> donut difference-in-means estimator

$$T = \frac{1}{7} \sum_{\tau \in [-3,3]} \widehat{\beta}_{\tau} - \frac{1}{40} \sum_{\tau \in [-30,-11] \cup [11,30]} \widehat{\beta}_{\tau}$$

Mean of probably treated period – mean of probably untreated period, with some buffer
Null: T = 0; Alternative: T ≠ 0

#### Randomized inference:

- Generate 5,000 hypothetical scenarios, each with 21 randomly-dated pollution alerts
- Obtain 5,000 "placebo" test statistics  $\{\widetilde{T}\} \Rightarrow$  "empirical null distribution"
- *p*-value of actual  $\widehat{T}$  = proportion of the empirical null that is more extreme than  $\widehat{T}$

#### **Randomized inference:** How statistically significant is the dip?

Distribution of effect sizes across 5,000 placebo alert scenarios for the JCF monitor:



## Simultaneous test (all monitors)

• Repeat JCF exercise to the entire pool of 1,359 monitors, testing a collection of hypotheses at once

{Hi : Monitor i's capture rate is not affected by pollution alerts} $_{i=1}^{1,359}$ 

• Output:

 $\{\hat{\beta}_{\tau}\}_{i}$ : event study coefficients for each monitor

 $\{\widehat{T}\}_i$ : test statistic based on  $\widehat{\beta}_{\tau}$ 's

 $\{p_value\}_i$ : permutation-based two-tail p-value based on  $\hat{T}$ 's

#### • Main challenge is over-rejection:

• At any chosen rejection threshold  $\alpha$ , about 100<sup>\*</sup> $\alpha$ % false positives even if alerts have no effect whatsoever

Under the null that alerts do not affect missingness, p-values should follow U(0,1):



Instead, we find over-abundance of small p-values



... and the spike of small p-values are driven by "correct"-signed estimates ("dips")



*Notes*: "Correct"-signed means  $\hat{T} < 0$  (i.e., data capture rate drops around pollution alerts)



*Notes*: "Interesting" monitors are those with p-values  $\leq 0.05$ 



*Notes*: "Interesting" monitors are those with p-values  $\leq 0.05$ 



*Notes*: "Interesting" monitors are those with p-values  $\leq 0.05$ 



"Interesting" Monitors ( $\Delta$ ) and Other Monitors ( $\bigcirc$ ): "Sharpened" Test Statistic

*Notes*: The sharpened, two-sided test rejects the null if the capture rate around time zero is lower than *both* the pre-period and the post-period. See paper for more details.

#### Examples of "Very Interesting" Monitors (☆)



*Notes*: "Very Interesting" monitors are manually selected for illustration purpose, not used in any formal analysis

#### Study Website (BETA)

#### • Estimation results available at the individual monitor level:



Link: https://www.google.com/maps/d/u/0/edit?mid=1e6vuA\_OXa-QfCMrYanwkWV7XiGl50d1q&usp=sharing

#### **Hotspot Regions**

14 CBSAs across the U.S. house 60% of all "interesting monitors"
Examples: CA & AZ



#### Outline

- Institution
- Main Results
- Discussion
  - Mechanisms?
  - Economic importance?
  - Policy alternatives?

#### Mechanism

How?
 Why?

### Mechanism

- Paper discusses monitoring protocols and why *might* monitors miss data
  - Key reference: *Quality Assurance Handbook for Air Pollution Measurement Systems* (U.S. EPA, 2013)
- Consider possibility of missing data in three stages of monitoring
- 1. Measurement Acquisition
- 2. Quality Control
- 3. Data Submission



Source: U.S. EPA

#### Shelter design



Source: California Resources Board



Source: Glenn Gehring

- Missing data problem may arise at measurement acquisition stage
  - Instrument malfunction, sample contamination, preventive maintenance, staff shortage, power outage ..
  - .. and strategic non-sampling, as we argue in this paper

- Missing data problem may arise at measurement acquisition stage
  - Instrument malfunction, sample contamination, preventive maintenance, staff shortage, power outage ..
  - .. and strategic non-sampling, as we argue in this paper
- Can these alternative reasons explain the finding?

- Missing data problem may arise at measurement acquisition stage
  - Instrument malfunction, sample contamination, preventive maintenance, staff shortage, power outage ..
  - .. and strategic non-sampling, as we argue in this paper
- Can these alternative reasons explain the finding?
  - Probably not.
  - Most pollution analyzers are placed inside the HVAC-controlled shelter
  - Federal FRM/FEM-certified monitoring technologies should stand up to the range of pollution conditions seen in the U.S. (over 99% daily observations < 100 ug/m3)
  - We train machine learning models; find outdoor weather elements are not predictive of missingness at all

## 2. Quality Control

- Missing data problem may also arise if a monitor fails periodic QC tests conducted by the state agency
  - Example: one-point QC check. An ozone monitor is exposed to a gas of known concentration; if measured ozone exceeds true concentration by 7%, the monitoring agency should voids all previous readings extending back to the date when the monitor passed the previous one-point QC check
  - Done once every two weeks
- What about extreme values?
  - EPA guideline encourages manual inspections of all data to spot unusual values to "indicate a gross error in the data collecting system"
  - But, an outlier is considered valid until there is an explanation for why the data should be invalidated, e.g. if the monitor fails a subsequent one-point QC test.
- Bottom line: QC failures typically result in the invalidation of large chunks of data, which we believe is unlikely to explain short-term missingness as we identify in this paper

### 3. Data Submission

- Processed, QC-ed data are submitted by the state to the federal EPA's Air Quality System
- EPA has the ultimate authority to decide whether it will use the submitted data in determining NAAQS compliance
- Very occasionally, EPA has invalidated states' data after failures in federal audits
  - Example: A contract lab's audit failure led data from four states to be suspended from NAAQS comparison (https://www.epa.gov/air-trends/pm25-data-omitted-airtrends-assessment)
- These cases also tend to invalidate large swaths of data; unlikely to be relevant for this paper

#### Mechanism

How?
 Why?

### Mechanism

- The incentive to avoid falling (back) into non-attainment appears to be the primary driver of our findings
  - Perhaps not entirely surprising given large fiscal costs of NAAQS violation (e.g., <u>Greenstone, List, Syverson 2012; Walker 2013</u>)
  - ... and evidence on states' efforts to achieve localized air quality improvements near monitors (e.g., <u>Bento, Freedman, Lang, 2015; Auffhammer, Bento, Lowe, 2019</u>)

#### County's NAAQS violation status is a strong predictor for having "interesting" monitors

|                                    | (1)                    | (2)                 | (3)                 | (4)                 | (5)                       | (6)                 | (7)                 | (8)                 |
|------------------------------------|------------------------|---------------------|---------------------|---------------------|---------------------------|---------------------|---------------------|---------------------|
| Dep. var.:                         | $1(p-value \leq 0.05)$ |                     |                     |                     | $1(q$ -value $\leq 0.05)$ |                     |                     |                     |
| Non-attainment                     | 0.066**<br>(0.030)     |                     |                     |                     | 0.039*<br>(0.021)         |                     |                     |                     |
| Non-attainment × 1("wrong" sign)   | -                      | -0.014<br>(0.033)   | 0.011<br>(0.034)    | -0.001<br>(0.041)   |                           | -0.002<br>(0.024)   | 0.012<br>(0.024)    | 0.022<br>(0.030)    |
| Non-attainment × 1("correct" sign) |                        | 0.203***<br>(0.055) | 0.220***<br>(0.055) | 0.223***<br>(0.061) |                           | 0.111***<br>(0.039) | 0.124***<br>(0.039) | 0.129***<br>(0.044) |
| Above median Democrats             |                        |                     | -0.022<br>(0.027)   |                     |                           |                     | -0.014<br>(0.019)   |                     |
| Above median LCV score             |                        |                     | -0.023<br>(0.027)   |                     |                           |                     | -0.021<br>(0.019)   |                     |
| Above median government size       |                        |                     | 0.007<br>(0.017)    |                     |                           |                     | -0.001<br>(0.012)   |                     |
| Above median corruption            |                        |                     | 0.035*<br>(0.018)   |                     |                           |                     | 0.008<br>(0.013)    |                     |
| State fixed effects                |                        |                     |                     | $\checkmark$        |                           |                     |                     | $\checkmark$        |
| Mean dep. var.<br>Observations     | 0.117<br>1,359         | 0.117<br>1,359      | 0.117<br>1,359      | 0.117<br>1,359      | 0.052<br>1,359            | 0.052<br>1,359      | 0.052<br>1,359      | 0.052<br>1,359      |

*Notes*: "*q*-value" is false discovery adjusted significance level a la <u>Benjamini and Hochberg (1995)</u>, <u>Storey (2013)</u>, <u>Anderson (2008)</u>.

#### For "interesting" monitors, data capture rates are lower during bad years in general, not just around pollution alerts



### **Economic Importance**

- Risk of understating pollution in a county if high-pollution days are under-sampled
  - This can lead to foregone health value ...
  - ... due to regulation-induced air quality improvements that the county would otherwise have enjoyed without strategic monitoring
  - See this idea in Sullivan and Krupnick (2018) and Fowlie, Rubin, Walker (2019)
- To illustrate this effect, use inverse distance weighting (IDW) to characterize distribution of PM<sub>2.5</sub> when monitoring data are missing
  - Impute monitor i's reading as inverse-distance-weighted average of readings from all monitors within 20 miles

#### **Imputation method: Inverse distance weighting (IDW)** Impute missing PM2.5 from "donor" monitors within 20-mile radius



#### **Imputation method:** Atmospheric modeling (Di et al., 2019) Pattern replicates almost exactly using ML-based predictions instead



*Notes*: Di, Qian, et al. "An ensemble-based model of PM2. 5 concentration across the contiguous United States with high spatiotemporal resolution." *Environment International* 130 (2019): 104909.

#### **Economic Importance**

- Our imputation suggests:
  - 23.1% of the missing days would have > 15 ug/m3 (6.6 extra days of annual-standard violation)
     2.7% of the missing days would have > 35 ug/m3 (0.8 extra day of daily-standard violation)
- This works to an annual foregone health (mortality) VSL of \$67 million per interesting monitor:
  - 1) Each 24-hour exceedance = 9.6 pp. increase in the chance of nonattainment status within next three years
  - 2) Nonattainment = 1.6 ug/m3 reduction in PM2.5 per year (<u>Sanders, Barreca, Neidell, 2020</u>)
  - 3) 10 ug/m3 PM2.5 = 6% change in all-cause adult mortality (<u>Krewski et al., 2009</u>)
  - 4) VSL of \$8.9 million 2020 USD

#### **Alternative Institutions**

- How to prevent strategic non-monitoring?
- Don't just *ignore* missing values
   Substitute missingness with something that better approximate the truth
- Can learn from the U.S. EPA Acid Rain Program (ARP)
  - Cap-and trade program that monitors power plants SO2 and NOx emissions through CEMS
  - If a unit's data capture rate falls below 90%, impute with maximum value in the past 30 days
  - ARP Data capture rate: > 90%
- Probably too conservative in context of ambient air monitoring; but more stringent data substitution rule can probably help

### Conclusion

- An example of large-scale inference problems where the research goal is to credible identify a small amount of interesting units among a sea of null
- Many applications in other fields; relatively few in economics
  High-throughput screening for drug discovery
  Genomics/proteomics data analysis

### Thank you!

Yingfei Mu (JHU econ Ph.D. candidate) Edward Rubin (<u>edrub.in</u>) Eric Zou (<u>eric-zou.com</u>)

# Appendix

Robustness to alternative test-statistic specifications

