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A. Additional Background on Particulate Matter Regulation 

 This section provides more institutional and administrative details about the EPA's 

particulate matter (PM) monitoring practice. I first describe steps involved in obtaining PM 

samples. Next, I discuss determinants of schedule assignments and monitor placements. Finally, I 

introduce newly available continuous PM monitoring and their relationship with traditional 

periodic PM samplers. 

A.1. History of Particulates Pollution Sampling, 1950s – 1970s 

 The practice of intermittent pollution monitoring dates back to the 1950s when the U.S. 

first started collecting data for particulates pollution. The National Air Sampling Network was 

established in 1955 under the Federal Air Pollution Research and Technical Assistance Act. The 

Act establishes a purely informational role of the government to conduct research on air pollution 

matter. No air quality standards are set and regulatory provisions are included to punish polluters. 

Initially, air sampling stations are set in 17 communities. The network expands to 83 communities 

by the end of 1956. During this period, sampling is done on a weekly basis, where the sampling 

day is chosen by the state operator at their convenience.  

 Two problems with the Network were (1) the geographic coverage was poor, and (2) since 

monitoring days are chosen by convenience, very few samples were obtained on weekends, biasing 

the resulting average concentration. A major revision is put into effect in 1957. First, the Network 

expands to a “national” scale that contains more than 150 stations distributed in each state.  

Second, it starts to implement a “modified random” sampling scheme. In this scheme, pollution 

samples are taken biweekly, and within each 2-week window the sampling day is randomly chosen 

at the beginning of the year. In a 1957 study, the U.S. Public Health Service concluded that 

“sufficiently reliable measures of air pollution in a specific area may be obtained by sampling on 

a limited basis and the additional accuracy to be gained by daily sampling is not sufficient to justify 

the increased operation costs.” (U.S. Public Health Service, 19571) 

 At the time, the low monitoring frequency was warranted by the fact that the purpose of 

TSP sampling was purely informational. This changed in the 1970s when the Clean Air Act 

established regulatory standards for TSP. Because compliance status was based on annual 

                                                           
1 United States Public Health Service. Air Pollution Measurements of the National Air Sampling Network." 

Analysis of Suspended Particulate Samples Collected 1061 (1957) 
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statistics of TSP, data from biweekly sampling was no longer sufficient. Therefore, a new 

monitoring practice must be developed which has a higher data capture rate while brings minimum 

burden to operation agencies as possible. Such a method was proposed by Akland (1972)2, who 

studied a cyclical sampling schedule which samples TSP once every kth day. In the paper, Akland 

used six years of daily TSP data from a monitoring site in Buffalo, and showed that mean and 

precision statistics computed from subsamples using a 1-in-3 day schedule or a 1-in-13 day 

schedule are not significantly different from those computed from the entire sample. The Clean 

Air Act subsequently adopted a 1-in-6 day monitoring schedule (for the vast majority of TSP sites) 

in the TSP regulation and the practice continued in PM regulation starting from 1980s.  

 

A.2. Modern Particulate Matter Sampling Procedures 

 The federal EPA outlines the practice standard for PM sample handlings in the Quality 

Assurance Handbook for Air Pollution Measurement Systems (U.S. EPA, 2013). Manual sampling 

of PM is a delicate procedure that demands great care. Local monitoring agencies are advised to 

give “particular attention” to the handling of filters for PM as the process of filter handling is 

understood to be a major source of measurement error. 

 Atmospheric PM is measured by the amount of particle deposition when a PM monitor 

forces air through a size-discrimination filter which is typically made of glass fibers (for PM10 

measurement) and Teflon (for PM2.5 measurement). PM concentration is then computed by the 

ratio of amount of particle deposition (in ug) to the volume of air that carried the particles (in m3). 

Due to the need for measuring air flow, modern PM monitors are also under microprocessor control 

that uses real time temperature and barometric pressure readings to determine flow rate. Regular 

maintenance effort is needed to ensure that monitor measurements function properly. Sampler dust, 

especially build-up in the air inlet, must be cleaned roughly after 15 days of monitoring. 

Calibration needs to be verified every 90 days to ensure the accuracy of air flow measurement.  

 Filters are first pre-weighed before they are taken to the monitoring site to collect samples. 

They are then transported to the monitoring site where sampling takes place. After samples are 

collected, filters must be carefully removed from the monitoring device, placed in labeled, 

                                                           
2 Akland, Gerald G. "Design of sampling schedules." Journal of the Air Pollution Control Association 22, no. 4 (1972): 

264-266. 
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nonreactive containers, and sealed. Samples are then delivered to the laboratory, usually on the 

same day that the samples are taken. In the lab, filters must be “equilibrated” in a controlled 

environmental for 24 hours (20 degree C and 40% humidity) before weighing analysis which must 

be done within 10 days since the sample collection.  

 The integrity of PM samples are sensitive to a variety of factors such as temperature 

extremes, air pressure, and the physical handling such as packing and jostling. As a consequence, 

local monitoring agencies are required to develop standard operating procedures that take these 

considerations into account on a site-by-site basis. Also, the monitoring agency's personnel who 

has “custody” of the samples on each sampling day needs to make sure the security of the sample 

and that no tampering occurred. Because PM samples may be transferred among multiple parties 

through various stages of storage, processing, and analysis at the laboratory, a written “Chain of 

Custody” (COC) record form must exist that accompany the samples at all time from the field to 

the laboratory, listing the locations of the samples and the corresponding custodians. 

 

A.3. Assignment of Sampling Schedules and Monitor Placement 

 Because manual PM sampling is costly, many monitoring sites employ periodic sampling 

framework. Other than the once every six days (1-in-6-day) schedule studied in this paper, two 

other frequently used schedules are the 1/3day and the 1/1day (i.e. daily) schedules. See Appendix 

Figure D.3 for a snapshot of monitor frequency distribution in year 2001 and 2013. By the EPA’s 

rule, monitor is considered eligible for NAAQS comparison only if it has sampled more than 75% 

of required sample in each quarter of the year. States can supply a makeup sample in cases where 

a scheduled sample is missed, but the makeup sample must be collected within seven days since 

the originally scheduled date in order to be considered valid. No reward is given to over-sampling: 

the EPA only accepts an applicable number of samples with the highest pollution readings in cases 

where more samples than required are taken. Appendix Table D.6 shows that the assigned 

monitoring frequency is closely followed by state governments. An average 1/6day monitors took 

58.4 samples (SD = 2.2) in a year, while 60 or 61 samples are required. More than 96% of these 

monitors took at least 90% of required samples. In contrast, few monitors took full samples. 

Compliance is similar among 1/3day and 1/1day monitors. 
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 As discussed in the main text, whereas states are granted the authority to carry out pollution 

monitoring, assignment and revisions of sampling frequency are determined by the regional EPA 

office which administers several states. For the current regional EPA delineation, see 

<https://www.epa.gov/aboutepa/visiting-regional-office>. Below I provide more details about the 

administration of sampling frequency assignment and revisions. I provide separate discussion for 

PM2.5 sites and PM10 sites as the rules for frequency assignment and revisions are slightly 

different. 

 PM2.5 sampling frequency. In principle, all PM2.5 samplers are required to sample at least 

once every three days (40 CFR Part 58). Individual sites can also request EPA Regional 

Administrator for reduction to once every six day schedule on a case-by-case basis. The EPA 

Regional Administrator may grant sampling frequency reductions after consideration of factors 

(including but not limited to the historical PM2.5 data quality assessments, the location of current 

PM2.5 design value sites, and their regulatory data needs) if the Regional Administrator 

determines that the reduction in sampling frequency will not compromise data needed for 

implementation of the NAAQS.   

 A PM2.5 sampler may also follow the 1-in-6 day schedule if it is a collocating sampler to 

a 1/3day or a 1/1day sampler. By the EPA's regulation, for each reporting organization (usually a 

state), 25% of its PM samplers are required to be collocated with an identical samplers to estimate 

data precision, and these collocating samplers sample at the 1-in-6 day rate (40 CFR Part 58). This 

rate dropped to 15% in March 2003, when EPA decided that reduced collocation rate would not 

significantly deteriorate precision estimation. In principle, PM data collected by collocating 

samplers should not be used toward NAAQS comparison, unless the corresponding main sampler 

malfunctioned or did not collect a valid sample on a sampling day. Also, states should be clear 

about which samplers are collocators when reporting data to the AQS. Specifically, collocating 

samplers should all have a Parameter Occurrence Code (POC) of “2” in the AQS data whereas the 

main sampler has a POC of “1”. In practice, however, states had substantial misconceptions about 

how data from collocating samplers should be treated, e.g. in some cases states reported 

collocators' PM data for NAAQS comparison even when the main sampler has already collected 

valid samples; wrong POCs were also assigned to samplers. See EPA's memorandum Use of 

Collocated PM2.5 Data and Parameter Occurrence Codes (POCs) which can be found here: 

<https://www.epa.gov/sites/production/files/2015-09/documents/25colo_0.pdf>. For this reason, 
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in the main analysis I do not attempt to identify and exclude collocating PM samplers from the 

estimation sample. I do confirm that near sites with standalone 1-in-6 day samplers (i.e. sites where 

the 1-in-6 day sampler must not be a collocator) the gaming effect is stronger.              

 PM10 sampling frequency. The 1997 revision of PM NAAQS sets sampling frequency to 

a minimum of once in three days for all PM2.5 and PM10 sites. But for PM10 monitoring, an 

exemption can be granted to a site that reduces the sampling frequency to once in six days if it can 

be shown that there is "little chance that the daily PM10 standard will be exceeded" (U.S. EPA, 

1997b). Specifically, a site is eligible for the exemption if a one-tail t-test of the difference between 

3-year 99th percentile value and the 24-hour standard of 150 ug/m3 plus five is significant at the 

10% level. In cases where this criteria cannot be satisfied, a site can still be considered eligible for 

exemption if the ratio of 3-year mean to the mean standard of 50 ug/m3 is smaller than the ratio of 

3-year 99th percentile to the max standard of 150 ug/m3 so that the mean standard is the "controlling 

standard". 

 Characteristics of sites with different sampling frequencies. In general, more frequent 

schedule is assigned to sites with higher chances of violating the NAAQS. I provide some 

industrial and government characteristics by monitoring schedule in Appendix Table D.2. Because 

temporal data availability varies, for each monitoring group I report cross-sectional statistics. Thus, 

each cell in the table shows the county-level characteristics for a monitor that follows a specific 

monitoring schedule, averaged across the entire study period. Starting the first row, I find that the 

odds of a monitor ever violating a PM NAAQS standard from 2001-2013 is about 50 percent at a 

1-in-1-day site, much higher than at sites that follow intermittent monitoring (about 30 percent). 

Daily traffic volume seems to be higher at 1-in-1-day locations, suggesting every-day monitoring 

is more likely to be employed in urban centers. Continuing the rows, I find little evidence that 

county-level composition of polluting industries (including manufacturing, utility, mining, and 

construction) differ significantly across schedules. For instance, the county-level fraction of 

employment in the manufacturing sector is roughly about 10 percent at 1-in-1-day, 1-in-3-day, and 

1-in-6-day sites. There is also little evidence that government characteristics differ. For example, 

counties with different monitoring schedules are similar in government sector size, level of 

environmental friendliness (measured by state-level index of the League of Conservation 

Scorecard), as well as blue/red party affiliation shares (at the state-level). Overall, I find that 
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observed pollution levels as well as past NAAQS violation histories appear to be the driving forces 

underlying monitoring frequency assignment.  

A.4. Continuous Monitoring Technology 

 The past decade has seen enormous development of continuous PM monitoring 

technologies. In this subsection I briefly introduce some of these technologies and review the main 

barriers that prevent them from replacing the traditional manual PM sampling. I will focus on 

PM2.5 monitoring, the focus of most of the innovations.    

 Manual sampling of PM2.5 acquires deposits over a 24-hour period on a size-

discrimination filter from air drawn at a controlled flow rate through the PM2.5 inlet. If done 

appropriately, manual sampling obtains the most accurate measure of ambient PM2.5 

concentrations. In the EPA's language, this method provides the “reference” measure of PM2.5 

and is named the Federal Reference Method (FRM). Performance of any continuous monitoring 

technology is judged by its ability to replicate monitoring results from the FRM method. Below I 

cite descriptions of two most commonly used continuous technologies and their monitoring 

method from the EPA's 1998 Guidance for Using Continuous Monitors in PM2.5 Networks which 

can be found here: <https://www3.epa.gov/ttnamti1/files/ambient/pm25/r-98-012.pdf> 

 Tapered Element Oscillating Microbalance (TEOM). “Particles are continuously collected 

on a filter mounted on the tip of a glass element which oscillates in an applied electric field. The 

glass element is hollow, with the wider end fixed; air is drawn through the filter and through the 

element. The oscillation of the glass element is maintained based on the feedback signal from an 

optical sensor. The resonant frequency of the element decreases as mass accumulates on the filter, 

directly measuring inertial mass. The typical signal averaging period is 10 minutes. Temperatures 

are maintained at a constant value, typically 30°C or 50°C, to minimize thermal expansion of the 

tapered element.” 

 Beta Attenuation Method (BAM). “Beta rays (electrons with energies in the 0.01 to 0.1 

MeV range) are attenuated according to an approximate exponential (Beer's Law) function of 

particulate mass, when they pass through deposits on a filter tape. Automated samplers utilize a 

continuous filter tape, first measuring the attenuation through the unexposed segment of tape to 

correct for blank attenuation. The tape is then exposed to ambient sample flow, accumulating a 
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deposit. The beta attenuation measurement is repeated. The blank- corrected attenuation readings 

are converted to mass concentrations, with averaging times as short as 30 minutes.”    

 Although some continuous technologies can provide reasonable proxies of PM2.5 

concentrations, their performance varies significantly across space and time. For example, the 

ability of both TEOM and BAM to provide FRM-comparable data compromises when the sampled 

aerosol is not stable. It is known that when the sampled PM2.5 deposits contain a high fraction of 

volatile components, both TEOM and BAM sensors measure reduced amount of mass relative to 

the FRM method. Employment of continuous technologies therefore requires substantial 

validation efforts before the data can be used toward NAAQS comparison. Separately, current 

regulation (40 CFR 58, Appendix D, Section 2.8.1.3.8) requires continuous PM2.5 monitors to be 

operated in large US metropolitan areas. However, data obtained from these monitors are only 

intended to be used for public reporting and forecasts of PM2.5 concentrations, not for NAAQS 

comparison.  

 Appendix Figure D.4 plots the number of PM2.5 monitors by sampling frequency and 

method since 2001. There is a big rise in the information use of continuous PM2.5 monitors starting 

2004, the year AirNow launched. Continuous monitors were not used for NAAQS regulatory 

purposes until 2009. Over the entire time period, 23% of continuous monitors are used for such 

regulation. While regulation use of continuous monitors has risen in recent years, these continuous 

monitors are only slowly replacing manual monitors. Extrapolating the roughly linear trends in the 

figure above, the entire PM2.5 monitoring system will not become continuous until 2035. Trends 

also suggest that continuous monitors are mostly replacing 1-in-3-day and 1-in-1-day manual 

monitors; the replacement of 1-in-6-day monitors is occurring more slowly. The differential 

resistance of upgrading 1-in-6-day monitors to continuous might be an interesting fact in and of 

itself.  But overall, the trends suggest that intermittent pollution monitoring is not coming to an 

end in the near term. 

 

B. Additional Data Descriptions 

B.1. Satellite Data 
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 The satellite data is sourced from the NASA’s Moderate Resolution Imaging 

Spectroradiometer (MODIS) algorithm installed on Terra, a sun-synchronous satellite that crosses 

the equator on descending passes at approximately 10:30 AM local time. MODIS contains a total 

of 36 spectral bands (ranging from 0.4 to 14.2 microns) that passively measures reflected solar and 

thermal radiation emission, and produces data for a wealth of atmospheric elements such as surface 

temperature, moisture, water vapor, etc. This paper uses MODIS’ aerosol variable which measures 

aerosol optical depth (AOD) at 0.55 microns wavelength. Importantly, while the AOD retrieval 

method hasn’t fundamentally changed since its invention in late 1990s, the algorithm gets refined 

overtime. These updates are reflected in new “collections” of data, i.e. releases of re-processing of 

raw imageries that incorporate algorithm refinements. This paper uses MODIS’ collection 6 AOD 

data, which is the most updated version at the time of writing.3 Notably, MODIS collection 6 

features the availability of an enhanced retrieval algorithm called “Deep Blue” that substantially 

improves the ability to measure AOD over bright surface (e.g., snow and deserts). I use the 

“AOD_550_Dark_Target_Deep_Blue_Combined” AOD measure that incorporates this new 

algorithm through a merge between the “Deep Blue” and the original “Dark Target” measure 

which only retrieves AOD over dark surface.  

 The key outcome variable of this study is a panel dataset of daily aerosol level with a 

10km×10km grid spatial resolution. This variable is constructed from daily aerosol raster files at 

the spatial resolution of 10km×10km pixel array. In order to create the grid level panel dataset, 

original satellite pixels must be mapped onto a series of 10km×10km grids which correspond to 

the same ground areas over time. To execute the mapping, I first re-grid daily aerosol raster files 

into 0.1km×0.1km pixel sizes, and then map them onto a 10km×10km gridded map of the 

contiguous U.S. provided by the US National Grid Information Center where the grid boundaries 

are fixed over time. In other words, the aerosol level for each 10km×10km grid-day is computed 

as the average aerosol level of all 0.1km×0.1km pixels that fall within the grid on that day. This 

procedure ensures that the grid dataset preserves the original resolution of the satellite rasters, and 

                                                           
3 Sayer, A. M., L. A. Munchak, N. C. Hsu, R. C. Levy, C. Bettenhausen, and M‐J. Jeong. "MODIS Collection 6 

aerosol products: Comparison between Aqua's e‐Deep Blue, Dark Target, and “merged” data sets, and usage 

recommendations." Journal of Geophysical Research: Atmospheres 119, no. 24 (2014). 

 



10 
 

that each grid tracks aerosol levels for the same area over time. Appendix Figure D.5 provides a 

map of 2001-2013 average grid aerosol level for the lower 48 states.  

  Existing literature has documented a strong correspondence between the MODIS aerosol 

measure and ground level PM (Liu, Franklin, Kahn, and Koutrakis, 2007; Lee, Coull, Bell, and 

Koutrakis, 2012; Zhang and Lee, 2015). As a replication of this relationship in my study context, 

I correlate monitor-daily level PM2.5 concentrations to the daily aerosol level within the 

10km×10km grid where the monitor falls in. Appendix Figure D.6 plots a simple bin-scatter of 

PM2.5 concentrations by the corresponding aerosol level. 

 

B.2. Industry Data 

 County Business Pattern. Employment data are drawn from the Census Bureau’s annual 

County Business Pattern (CBP) data which contains information on industry × county level 

employment counts. For each 3-digit NAICS industry available in the CBP, I compute its 

employment concentration for every county, defined as the share of employment in the 3-digit 

industry relative to the county’s total employment. Importantly, in the CBP data about 50 percent 

of employment counts at the 3-digit industry × county level are masked to avoid disclosure. In 

cells where employment counts are masked, I use the CBPs’ establishment count by employee size 

class information to impute employment count. Specifically, a county’s employment count for a 

masked industry j is imputed as  

𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑗 = ∑ 𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡𝑗𝑠 × (
𝑀𝑎𝑥𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑆𝑖𝑧𝑒𝑠+𝑀𝑖𝑛𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑆𝑖𝑧𝑒𝑠

2
)𝑠   

where 𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡𝑗𝑠 is number of industry j ’s establishments in employee size class s, and 

𝑀𝑎𝑥(𝑀𝑖𝑛)𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑆𝑖𝑧𝑒𝑠 is the upper (lower) end of the employee count range of employee 

size class s.  

 Toxic Release Inventory. I obtain annual observations of polluters' location and reported 

total emission from the EPA's Toxic Release Inventory (TRI). By the 1986 Emergency Planning 

and Community Right-to-Know Act (EPCRA), a facility is required to report to the TRI if it 

satisfies all three of the following requirements: (1) it is included in a EPCRA-listed North 

American Industry Classification System (NAICS) code, which includes mining (NAICS 212), 

utilities (NAICS 221), Manufacturing (NAICS 31-33), Hazardous Waste (NAICS 562) among 
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others. All federal facilities are included regardless of industry (in the data, more than 50% of the 

federal facilities are in the industry of national security (NAICS 928)); (2) it has at least 10 full 

time employees; and (3) it processes more than 25,000 pounds or uses in production more than 

10,000 pounds of EPCRA-listed toxic pollutants during the year. At the time of this writing, the 

list contains about 690 individual pollutants. Key variables contained in the TRI are facility latitude 

and longitude, self-reported annual stack and fugitive emissions, and NAICS code. 

 In Section C.4 below, I used the the TRI’s self-reported emission amount to construct a 

county-level Herfindahl-style index (HHI) of emission concentration. Specifically, for each county 

c and year y, I define its emission HHI to be 

 

HHI𝑐𝑦 = {

1

1−1/𝑁𝑐𝑦
(∑ (

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑐𝑦

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑐𝑦
)

2

− 1/𝑁𝑐𝑦
𝑁𝑐𝑦 

𝑖=1
)                   if 𝑁𝑐𝑦 > 1

1                                                                                          if 𝑁𝑐𝑦 = 1 

  

 

where 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑐𝑦/𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑐𝑦 is the share of air pollutants emission by polluter i in county c 

and year y, and 𝑁𝑐𝑦 is the total number of polluting facilities in the county × year. The value of the 

HHI therefore ranges from 0 to 1, with higher value representing the highest emission 

concentration, i.e. areas where emissions are concentrated in the hands of few polluters. 

 

B.3. Weather Data 

 Temperature and Precipitation. Temperature and precipitation measures are derived 

from the National Climatic Data Center’s Global Historical Climatology Network (GHCN) which 

contains daily weather information from about 9,000 weather stations across the U.S. I compute 

county × daily level temperature and precipitation using 20 mile inverse distance weighting: a 

county × day’s temperature (precipitation) is computed as the weighted average of readings from 

all monitors within 20 miles to the county’s centroid, where the reading from a given monitor is 

assigned a weight equal to the inverse of the distance between the monitor and the county’s 

centroid. 
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 Wind. Wind direction and speed data are drawn from the North American Regional 

Reanalysis (NARR, 2001-2013) produced by the National Centers for Environmental Prediction.  

NARR contains wind conditions information at a spatial resolution of 32km × 32 km grid cell. For 

each grid cell × day, NARR reports the horizontal (u-wind) and vertical (v-wind) components of 

the wind vector. From 2001 to 2013, I compute daily wind vector at each county by geographically 

interpolating the u- and the v- components between nearby grid cells within 20 miles to the 

county’s centroid. I then convert the components to average wind speed and direction using 

trigonometry. 

  

C. Additional Analysis  

C.1. 1-in-6-Day Monitor Retirement  

 Section IIIA of the paper exploits monitor retirement events to examine changes in the 

level of pollution on on-days and off-days. Here I provide additional details of the analysis.  

 Synthetic weights. To improve the comparability of non-retiring sites to retiring sites in 

terms of pre-treatment pollution levels, I use the synthetic control method to assign weights to each 

control site in such a way that the weighted average control site will do a better job tracking trends 

in retiring sites’ pre-treatment pollution levels in an MSE-minimizing sense. I compute synthetic 

weights based on data in periods t=-4 and t=-3 only, allowing me to use t=-2 and t=-1 as a 

validation sample of the synthetic control method’s performance in my context. That is, if synthetic 

weighting does a good job capturing overall trends, we expect to a mechanically-zero difference 

between treatment and control pollution levels in period t=-4 and t=-3, but also a zero difference 

at t= -2 and -1. Any post-treatment difference in pollution for the treated and control units is then 

attributable to the effect of the treatment.  

 Difference-in-Differences Results. The graphical evidence in Figure 4 motivates a 

difference-in-differences design that compares retiring sites and (synthetically weighted) non-

retiring sites, before and after retirement.  Appendix Figure D.7 summarizes the findings 

graphically. The chart plots difference in pollution levels in treated site and (synthetic) control 

sites as a function of years relative to monitoring site retirement. To test for differential response 

across on- and off-days, the regressions are run separately for monitoring days (panel A) and non-
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monitoring days (panel B). Two major patterns emerge. First, in both panels, the difference 

between treated and control units is close to zero before treatment. Note that, as explained earlier, 

this finding is mechanical for t=-3 (because data in that event year are used to generate synthetic 

weights), but is not mechanical for t=-2 or t=-1. This pattern suggests that synthetic weights 

perform well in capturing factors that cause treatment and controls to be on a differential pre-trend 

in the first place. Second, Appendix Figure D.7 features a rise in pollution on monitored days after 

treatment. The individual event-year coefficients are not statistically significant, but the overall 

increase is judged as visually obvious. For a non-retiring site, there is no evidence of changing 

pollution levels before and after retirement of other sites. This pattern echoes the observation from 

raw data: monitoring retirement appears to only increase on-day pollution levels, without changing 

pollution levels on off-days. 

 

C.2. Strategic Action Day Warnings and Political Characteristics 

 Section IIIC documents evidence on strategic air quality Action Day warnings. To explore 

potential mechanisms that could explain why some areas are issuing strategic warnings, below I 

report an additional analysis that sheds some light on political characteristics associated with areas 

that issue strategic Action Day advisories.  

 I first document substantial heterogeneity in strategic advisories (henceforth, the “advisory 

gap”) across states. Appendix Figure D.8 reports a specification in which I allow the off-days/on-

day advisory gap to vary by each state in my sample. Several patterns emerge. First, not every state 

shows evidence of strategic advisories. I detect an individually significant strategic advisory effect 

in six states (NJ, OH, TN, NY, ME, PA).  Second, there is meaningful variation in effect sizes 

across states, ranging from about 1.5 percentage points (out of a mean daily advisory rate of 1 

percent) in some states to effectively zero in others. Third, almost no states exhibit “positive” 

advisory gaps (i.e., more advisories on unmonitored days). This is reassuring because local 

agencies should have no incentive to issue more advisories on non-monitored days. 

 The presence of substantial heterogeneity across states provides an opportunity to 

investigate political characteristics underlying strategic advisories. For example, do strategic 

advisories often arise in states perceived less environmentally friendly? To shed light on some of 
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the potential mechanisms, I obtain additional data to build five state-level characteristics to 

measure potential political influences: 

 (a) Government size: government-sector (2-digit NAICS=92) employment as a share of 

total employment. Sector-specific employment data are sourced from the Bureau of Economic 

Analysis. 

 (b) Party affiliation: share of Democratic Party affiliation as of year 2006 (the middle point 

of my study period) using data from Gallup.  

 (c) “Pro-environment” score: League of Conservation Voters (LCV) score, which is based 

on state representatives’ voting records on environmental issues. A higher score indicates to a 

stronger environmental preference (e.g., Dietz et al., 20154). 

 (d) Corruption: per capita number of federal convictions among state and local public 

officials. These data are sourced from the Report to Congress on the Activities and Operations of 

the Public Integrity Section (PIN), which has been previously used in economic research of 

corruption in the United States (Glaeser and Saks, 20065; Leeson and Sobel, 20086; Grooms, 

20157). 

 (e) History of challenging federal NAAQS nonattainment-status designation: This is a 

novel measure I propose to capture a state’s administrative capacity to respond to the EPA’s 

NAAQS compliance regulations. Under the Clean Air Act, when NAAQS compliance is evaluated, 

each state has an opportunity to recommend designations before the EPA makes a preliminary 

designation decision, and an opportunity to challenge the preliminary designation before the final 

designation is made.  Upon receiving the preliminary designation, the state is allowed two months 

to challenge, usually by presenting new data analyses and arguments that support the original 

recommendation. These communications are publicized on the EPA’s website. In the lower 48 

states, 31 have submitted challenges in the past.  Using this information, I create a measure that 

                                                           
4 Dietz, Thomas, Kenneth A. Frank, Cameron T. Whitley, Jennifer Kelly, and Rachel Kelly. "Political influences on 

greenhouse gas emissions from US states." Proceedings of the National Academy of Sciences 112, no. 27 (2015): 

8254-8259. 
5 Glaeser, Edward L., and Raven E. Saks. "Corruption in america." Journal of Public Economics 90, no. 6-7 (2006): 

1053-1072. 
6 Leeson, Peter T., and Russell S. Sobel. "Weathering corruption." The Journal of Law and Economics 51, no. 4 (2008): 

667-681. 
7 Grooms, Katherine K. "Enforcing the Clean Water Act: The effect of state-level corruption on compliance." Journal 

of Environmental Economics and Management 73 (2015): 50-78. 
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potentially reveals states’ attentiveness and the political resources available for NAAQS 

compliance. I count the total number of pages each state has put together in challenging the EPA’s 

designation (zero if a state has not ever challenged). This measure has a wide spread; among the 

31 states that ever filed a challenge (mean = 62.4, SD = 69.8), ranging from Colorado (a single 

page submission) to Georgia (294 pages submitted).  

 Appendix Table D.7 reports results from a series of regressions in which the magnitude of 

the advisory gap is allowed to vary by whether the state is above or below the median value of the 

government characteristics (indicated by the column names). The interactive coefficient “1(off-

days) x 1(> median states)” therefore shows the additional degree of the advisory gap in above-

median states relative to below-median states. That is, a negative coefficient means the above-

median state issues more strategic advisories than below-median states. Results in Appendix Table 

D.7 suggest that places that issue strategic advisories not only have the bureaucratic incentive to 

game, but they also have the “administrative capacity” to do so. Column 4 shows that strategic 

advisories are more common in states that exhibit a history of challenging the EPA’s decisions 

with high effort. Somewhat in line with this finding, column 5 shows that the effects concentrate 

in states with an above-median corruption index, suggesting that increased degree of “political 

flexibility” may also be needed for strategic advisories to be actually carried out. On the other 

hand, I find that the advisory gap does not depend on the size of the government (column 1) or on 

the degree of general environmental friendliness (columns 2-3). 

 

C.3. Empirical Bayes Estimates of County-Level Pollution Gaps 

 Section IIID of the paper presents county-level estimates of the pollution gap. Here I 

provide additional details of the estimation. 

 Construction of Empirical Bayes estimates. To overcome noisy estimates at the county 

level, I construct Empirical Bayes (EB) estimates of county-level 1-in-6-day pollution gap. I use 

an approach adapted from previous research that uses big data to provide geographically localized 
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causal estimates (e.g., Chetty and Hendren, 2018; Finkelstein, Gentzkow, and Williams, 2019).8,9 

The logic of the Empirical Bayes approach is to strike an optimal balance between the direct 

estimate of the local effect (which is unbiased but often contains substantial noise) and the estimate 

of the population effect (which often contains bias but little noise due to large number of 

observations). In my setting, the EB estimates are a combination of the raw pollution gap estimates, 

which are unbiased estimates of the pollution gap at the county level, and an estimate of the 

“regionwide” pollution gap, which is a biased estimate of the pollution gap in the interested county, 

but has low variance. To estimate the regionwide pollution gap for a given county, I use data from 

all counties within 150 miles of the interested county’s geographic centroid. The 150-mile radius 

is used to represent the size of an average state in the United States. I do not use actual state 

boundaries to avoid the substantial variation in the size of states.  

 Following Chetty and Hendren (2018), the EB estimate mimics an MSE-minimizing linear 

predictor that would come out of a “hypothetical” OLS regression in which the true county-level 

effect is regressed on the raw county-level effect estimate and the regionwide estimate. In practice, 

the EB estimator is given by the following equation:  

βc
EB =

χ2

χ2 + sc
2

β̂c +
sc

2

χ2 + sc
2

⋅ γ̂ ⋅ (τc − τ̅) 

where �̂�𝑐 (𝜏𝑐) is the raw pollution gap estimate for county 𝑐.  𝛾 is the coefficient estimate obtained 

from a univariate OLS regression of �̂�𝑐 on 𝜏𝑐. 𝑠𝑐
2 are the sampling variance of the �̂�𝑐 estimates, 

and, in practice, they are estimated by the squared standard error of �̂�𝑐. 𝜒2 is the component of the 

variability of the true pollution gap across counties that is not explained by general variability 

across regions. In practice, 𝜒2 is estimated by the residual variance of a regression of �̂�𝑐 on 𝜏𝑐, 

minus the average sampling variance of �̂�𝑐: 

χ2 = var (β̂c − γ̂ ⋅ (τc − τ̅)) − E(sc
2) 

 EB is therefore given by a linear combination of the (unbiased but noisy) raw pollution gap 

estimate �̂�𝑐  and the (biased but precise) regionwide pollution gap 𝜏𝑐  with relative weights 

                                                           
8 Chetty, Raj, and Nathaniel Hendren. "The impacts of neighborhoods on intergenerational mobility II: County-level 

estimates." The Quarterly Journal of Economics 133, no. 3 (2018): 1163-1228. 
9 Finkelstein, Amy, Matthew Gentzkow, and Heidi L. Williams. Place-based drivers of mortality: Evidence from 

migration. No. w25975. National Bureau of Economic Research, 2019. 
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proportional to the signal-to-noise ratio in the �̂�𝑐  estimates. To put things in perspective, the 

average county-level regression underlying the estimation of �̂�𝑐 contains 35,236 observations, 

with a mean standard error of 0.0187 (in log scale); by contrast, the average region-level regression 

underlying the estimation of 𝜏𝑐 contains 2,224,094 observations with a mean standard error of 

0.0022 (in log scale). 

 Figure 7 of the paper plots a map of county-level pollution gap estimates. In Appendix 

Figure D.9, I overlay the histogram of the raw county-level pollution gap estimates with the EB 

estimates. Relative to the raw estimates, the EB estimates show visually apparent shrinkage 

towards zero. It is worth noting that shrinkages mostly take effect on very large (negative or 

positive) observations – in part because many raw county-level regressions have quite sufficient 

numbers of observations to begin with.  

 Positive vs. negative pollution gaps. The analysis above shows that some large positive and 

large negative pollution gaps arise from sampling variation, and that the EB approach partially 

addresses the concern. Here I illustrate that a negative pollution gap can also be explained by wind 

transport (in addition to sampling variation). I show this in two ways. 

 First, in Appendix Figure D.9, I use color shades to indicate pollution gaps by distance to 

the nearest hot-spot county. Hot-spot counties (those with top-decile pollution gaps) are colored 

back; colors are lighter for counties farther away from the nearest hot-spot county. The color 

pattern of the histogram reveals that counties with a smaller pollution gap – that is, those to the 

left-hand side of the histogram – tend to be far away from hot-spot counties. In fact, the histogram 

features a gradual change in the gray scale, indicating a systematic relationship between a county’s 

pollution gap and a county’s distance to hot-spot counties. This pattern is consistent with wind 

transport of pollution gaps originating from hot-spot counties.  

 Second, to further explore the pattern observed in the previous exercise, I estimate the 1-

in-6-day pollution profiles by distance to hot-spot counties, and by relative wind direction to the 

hot-spot counties. Appendix Figure D.10 summarizes the results. Panel A shows the “shape” of 

the 1-in-6-day pollution gap, estimated separately for counties in each decile of distance to hot-

spot counties indicated by the y-axis. Thus, the “distance = 0 mile” group represents the hot-spot 

counties themselves; the shape represents average aerosol levels by six day of monitoring cycle, 

indicated by the x-axis. The chart suggests that: (1) the drop in pollution on the monitoring day 
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becomes less salient as one moves away from the hot-spot county; (2) there appears to be a 

systematic shift of the timing of the pollution drop. For example, at about 170 miles from the hot-

spot counties, the day with the lowest pollution level occurs on day 1 rather than on day 0. At about 

300 miles, the day with the lowest pollution level occurs on day 3 (or equivalently, day -3 of the 

next six-day cycle). Perhaps as anecdotal evidence, the speed of such transport is consistent with 

the average wind speed of about 3 miles per hour in the United States; and (3) the negative 

pollution gap arises partly because the regression estimates always use the monitoring day (day 0, 

represented by the vertical dashed lines in the chart) as the reference day. Finally, Panel B of 

Appendix Figure D.10 repeats the same analysis (as in Panel A) separately for downwind counties 

(those with an absolute wind-bearing of less than 30 arc-degrees relative to hot-spot counties) and 

upwind counties (those with an absolute wind bearing of over 150 degrees). Results show that the 

shift is stronger for counties in downwind directions. 

 

C.4. Pollution Gap and County’s Emission Herfindahl Index 

 While cooperative polluting activities are unlikely to drive the pollution gap, they might 

be observed in counties with single/major polluters. I test this economic prediction by examining 

heterogeneous pollution gaps by county’s emission Herfindahl-Hirschman index (HHI) 

constructed from the EPA's Toxic Release Inventory (TRI) data which contain annual observations 

of plants’ reported total air emissions. The HHI ranges from 0 to 1 and takes larger values in 

counties where fewer polluters contribute to total emissions. Appendix Figure D.11 reports 

heterogeneous 1-in-6-day pollution patterns by high (≥ 0.9) vs. low (< 0.9) HHI. In unreported 

results, I show this finding is robust to various cutoffs of HHI. Results show significantly stronger 

gaming in areas with high levels of emission concentration, where the pollution gap averages 3.1 

percent. However, I cannot reject the existence of a significant pollution of about 1.2 percent in 

low HHI regions as well.  

 

C.5. Pollution Gap and Monitor’s Distance to Highway 

 As complimentary evidence to the warning analysis, I augment equation (2) of the paper 

by allowing the pollution gap estimate to vary flexibly by the monitor’s distance to nearest 
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highway segment. I focus on monitors located within 3 miles of the highway (< 0.5 miles, 0.5-1 

miles, … , 2.5-3 miles) and all other monitors are pooled into a single group (> 3 miles). Appendix 

Figure D.12 suggests a distance gradient. I find that monitors within 1 mile of highways exhibit a 

strong response (roughly 2.5 percent pollution gap), while the pollution gap is not detectable for 

monitors that are between 1 mile and 3 miles away from highways. The results also suggest that 

the pollution gap observed near highways is likely to only partially explain the main finding on 

the average pollution gap, as a significant pollution gap is also precisely estimated for all monitors 

that fall more than 3 miles away from highways. 

 



a
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Figure D.1: Heterogeneous Pollution Gap by County’s Previous Month PM2.5 Level
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Notes: This figures reports an extension of Figure 5’s regression, where the previous month’s PM2.5 enters the estimation model as
separate level bins, rather than a single linear term. The underlying regressions include main effect terms, site, year, month-of-year,
and day-of-week fixed effects, and weather controls (Section IIB). Range bars represent 95% confidence intervals constructed using
standard errors clustered at the county level.

Figure D.2: Distribution of Forecasted AQI on Action Days
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Notes: Distribution of forecasted AQI on days with Action Day advisory.
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Figure D.3: Location of 1-in-6-Day (Left), 1-in-3-Day (Middle), 1-in-1-Day (Right) Monitors
Panel A. Year 2001

Panel B. Year 2013

Notes: Map plots the 2001 (panel A) and 2013 (panel B) snapshot of the location of all PM monitors in the lower 48 states.
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Figure D.4: Number of PM2.5 monitors by monitoring frequency
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Notes: This figure plots annual number of PM2.5 monitors that follow different monitoring frequencies. “1-in-1-day (continuous)”
represents 1-in-1-day monitors that adopt a Class III FEM technique that automates PM2.5 monitoring. “Non-NAAQS (con-
tinuous)” represents 1-in-1-day monitors that adopt non-FEM techniques; these monitors are not used in determining NAAQS
nonattainment status designation.

Figure D.5: 10km×10km Aerosol Concentration, 2001-2013 Average

Notes: This map shows 13 year (2001-2013) average 10km×10km pixel level aerosol optical depth, among cells with above average
concentration value. Light-gray lines represent major highways.
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Figure D.6: PM2.5 and Aerosol Correlation, 2001-2013
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Notes: This figure presents the correlation between monitor PM2.5 readings and the satellite aerosol optical depth measure, defined
as the aerosol level within the 10km×10km area where the monitor lives in. Dots show average PM2.5 within 100 equally-sized
aerosol bin. Histograms show density of the raw PM2.5 and aerosol data.
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Figure D.7: Changes in Levels of Aerosol Pollution by Years Relative to Monitoring Site Retirement
Panel A. On-days - synthetic trends
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Panel B. Off-days - synthetic trends
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Notes: This chart shows regression estimates comparing on-day (panel A) and off-day (panel B) pollution and synthetic controls.
Event year -4 is normalized to 0. The underlying regression controls for group fixed effects (retiring site and matched non-retiring
sites within the same state), and no other controls. Dashed lines represent 95% confidence intervals constructed using standard
errors clustered at the county level.
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Figure D.8: Strategic “Pollution Action Day” Declarations: State Heterogeneity
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Notes: This graph shows state-specific estimate of the differences in the odds that off-day and on-days coincide with Action Day
advisory issuances. Coefficients are obtained from separate regressions by states that control for CBSA, year, month-of-year, and
day-of-week fixed effects. Range bars show 95 percent confidence intervals.
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Figure D.9: Distribution of Raw vs. Empirical Bayes Estimates of County-Level 1-in-6-Day Pollution Gap
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Notes: This graph plots a histogram of the raw (unadjusted) county-level pollution gap estimates and the Empirical Bayes-adjusted
estimates. Raw estimates are painted so that darker colors indicate counties closer to the hot-spot (top 10% largest pollution gap)
counties.
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Figure D.10: Wind-Shifts of Pollution Gaps
Panel A. All counties
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Panel B. Downwind vs. upwind counties
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Notes: This chart shows the “shape” of the 1-in-6-day pollution gap, estimated separately for counties in each decile of distance
to hot-spot counties indicated by the y-axis. Thus, the “distance = 0 mile” group represents the hot-spot counties themselves; the
shape represents average aerosol levels by six day of monitoring cycle, indicated by the x-axis. The left panel shows data from all
counties. The right panel repeats the same analysis, but does so separately for downwind counties (those with an absolute wind
bearing of less than 30 arc-degrees relative to hot-spot counties) and upwind counties (those with an absolute wind bearing of over
150 degrees).
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Figure D.11: Heterogeneous Pollution Gap by County’s Emission Herfindahl-Hirschman Index
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Notes: The figure displays 1-in-6-day pollution pattern separately for HHI≥ 0.9 (foreground graph objects) vs. HHI< 0.9 counties
(background graph objects). Regressions include fixed effects dummies (site, year, month-of-year, and day-of-week) and weather
controls. Dashed lines and the shades represent 95% confidence interval constructed from standard errors clustered at the county
level. “Equality p” corresponds to the null hypothesis that there is no difference in the pollution gap between the two groups.

Figure D.12: Heterogeneous Pollution Gap by Monitor’s Distance to Highway
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Notes: The figure plots interaction of pollution gap with the 1-in-6-day PM monitor’s distance (bins) to the nearest highway. The
group “> 3” pools all monitors that fall more than 3 miles from the nearest highway. Regressions include fixed effects dummies
(site, year, month-of-year, and day-of-week) and weather controls. Dashed lines represent 95% confidence intervals constructed
using standard errors clustered at the county level.
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Table D.1: Off-days vs. On-days Pollution Gap: Robustness to Sample Restrictions
Dep. var. = Aerosol concentration (log)

(1) (2) (3) (4)
Sample: Sample: Sample: Sample:

sites w. any sites w. any sites w. only counties w. only
1/6d monitor 1/6d monitor 1/6d monitor 1/6d monitor

1(off-days) 0.016*** 0.016*** 0.018*** 0.018***
(0.004) (0.004) (0.004) (0.006)

Ctrls X X X
N 685,060 685,060 427,846 176,225
N (site) 1,193 1,193 899 489

(5) (6) (7) (8)
Sample: Sample: Sample: Sample:

sites w. any sites w. any sites w. only counties w. only
1/3d monitor 1/3d monitor 1/3d monitor 1/3d monitor

1(off-days) 0.0028 0.0029 0.0024 0.0054*
(0.0026) (0.0020) (0.0025) (0.0030)

Ctrls X X X
N 598,859 598,859 386,854 244,071
N (site) 1,064 1,064 849 562

Notes: Each column reports a separate regression. “1(off-days)” indicates days when PM monitoring is not scheduled. “Controls”
include site, year, month-of-year, and day-of-week fixed effects, and weather covariates (Section IIB). Standard errors are clusterd
at the county level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table D.2: Additional Summary Statistics

(1) (2) (3)
1/1d 1/3d 1/6d

Ever in non-attainment (odds) 0.509 0.334 0.295
Daily traffic volume (count) 19,217 16,496 16,968
Industrial emissions concentration (HHI) 0.460 0.502 0.497
Employment in manufacturing (share) 0.092 0.115 0.097
Employment in utility (share) 0.0077 0.0065 0.0086
Employment in mining (share) 0.018 0.012 0.027
Employment in construction (share) 0.108 0.102 0.101
Employment in government (share) 0.120 0.121 0.132
State-level conservation scorecard 49.9 47.5 46.0
State-level Democrats affiliation (share) 0.499 0.508 0.500

Notes: One unit of observation is a monitor, and the monitored county’s characteristics are reported. HHI is computed using the
EPA’s Toxic Release Inventory. Employment share is computed as employment counts per county’s population from the Census
County Business Pattern. Conservation score is computed using the League of Conservation Voter’s score. Party affiliation is based
on a 2006 Gallup Poll.

Table D.3: Off-days vs. On-days Pollution Gap: “Placebo” Sites
Dep. var. = Aerosol concentration (log)

(1) (2) (3)
Sample: Sample: Sample:
retired 1/1d Non-PM

1/6d sites sites 1/6d sites (HAPs)

1(off-days) -0.0020 -0.0050 0.0023
(0.0046) (0.0077) (0.0044)

Ctrls X X X
N 372,989 231,532 370,020
N (site) 490 556 792

Notes: Each column reports a separate regression. The column names indicates the sample used. Column 1 includes areas that
had 1-in-6-day PM monitoring sites that retired. Column 2 includes 1-in-1-day sites. Column 3 includes 1-in-6-day HAPs sites.
“1(off-days)” indicates days when PM monitoring is not scheduled. “Controls” include site, year, month-of-year, and day-of-week
fixed effects, and weather covariates (Section IIB). Standard errors are clusterd at the county level. *: p < 0.10; **: p < 0.05; ***:
p < 0.01.

31



Table D.4: Off-days vs. On-days Pollution Gap: Robustness to Specification Choices

(1) (2) (3) (4) (5) (6) (7)

Panel A: Baseline specification

1(off-days) 0.0160*** 0.0162*** 0.0134*** 0.0130*** 0.0130*** 0.0169*** 0.0129***
(0.0040) (0.0035) (0.0035) (0.0036) (0.0036) (0.0034) (0.0036)

N 685,060 685,060 685,059 684,961 684,735 685,060 685,060

Panel B: Difference-in-differences (1-in-1-day sites as control group)

1(off-days)×1(1-in-6-day) 0.0173* 0.0149** 0.0125* 0.0138** 0.0142** 0.0154** 0.0140*
(0.0103) (0.0075) (0.0071) (0.0067) (0.0065) (0.0074) (0.0078)

N 916,592 916,592 916,591 916,477 916,212 916,592 916,592

No ctrls. X
Baseline ctrls. X X X X X X
Time FEs × state X
Time FEs × county X
Time FEs × site X
Month-of-sample FEs X
Week-of-sample FEs X

Number of FEs ctrls. (Panel A) 0 1,239 2,730 15,437 29,729 1,370 1,886
Number of FEs ctrls. (Panel B) 0 1,576 3,095 18,362 38,401 1,707 2,223

Notes: Each panel-column represents a separate regression. “1(off-days)” indicates days when PM monitoring is not scheduled.
“Baseline controls” include site, year, month-of-year, and day-of-week fixed effects, and weather covariates (Section IIB). Standard
errors are clustered at the county level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.

Table D.5: Pollution gap estimates by Pollution “Action Day” declaration
Dep. var. = Aerosol (log)

(1) (2)

1(off-days) × 1(warning) 0.069*** 0.051***
(0.014) (0.013)

1(off-days) × 1(no warning) 0.011** 0.013***
(0.005) (0.005)

1(off-days) × 1(no “Action Day” program) 0.011* 0.016***
(0.006) (0.006)

Ctrls X
N 685,060 685,060

Notes: Each column represents a separate regression. “1(warning)” and “1(no warning)” indicate whether the 1-in-6-day cycle
includes an Action Day issuance or not. “1(no “Action Day” program)” indicate monitors that live in counties that had never
issued any Action Day warnings from 2004 to 2013. Coefficient estimates on the group main effects are not reported in the interest
of space. Controls include fixed effects (site, year, month-of-year, day-of-week), daily temperature bins, precipitation, and wind
speed bins. Standard errors are clustered at the county level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table D.6: Particulate Matter Monitor Sampling Compliance
(1) (2) (3) (4)

Fraction Fraction
taking ≥90% taking 100%

Samples required Samples taken required samples required samples

1/6day monitors 60 or 61 58.4 [2.2] 94.27% 19.21%

1/3day monitors 121 or 122 115.6 [4.4] 90.75% 5.42%

1/1day monitors 365 or 366 349.1 [13.0] 91.81% 6.33%

Notes: Statistics are computed from monitor-year observations. Sample includes all monitors eligible for NAAQS comparison.
Standard deviation in brackets.

Table D.7: Heterogeneous Strategic Pollution “Action Day” Warnings by State Characteristics
Dep. var. = 1(warning)×100

(1) (2) (3) (4) (5)

Government Democrats Conservation Corruption NAAQS
State characteristics size affiliation scorecard index complaints

1(off-days) -0.130** -0.109* -0.117** -0.029 -0.040
(0.052) (0.059) (0.052) (0.040) (0.045)

1(off-days)×1(>median states) 0.045 -0.001 0.018 -0.154** -0.125*
(0.069) (0.073) (0.069) (0.068) (0.068)

N 624,150 620,500 624,150 624,150 624,150

Notes: Each column represents a separate regression. 1(>median states) indicates states with above-median value of the corre-
sponding characteristic. Standard errors are clustered at the CBSA level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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