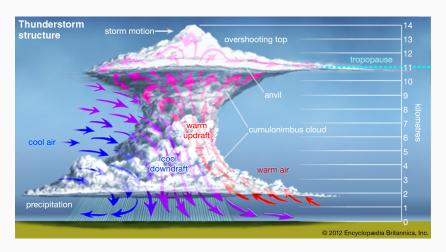
"Thunderstorm Asthma": Respiratory Emergencies during Thunderstorm Events

Eric Zou (Oregon & NBER)

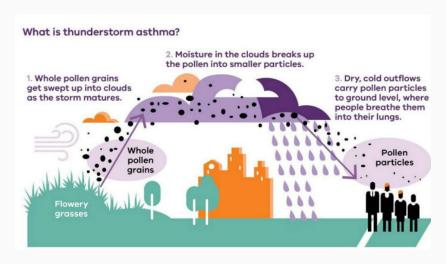

Nolan Miller (Illinois & NBER)

David Molitor (Illinois & NBER)

Julian Reif (Illinois & NBER)

Christopher Worsham (Harvard & Massachusetts General Hospital)

Anupam Jena (Harvard & NBER & Massachusetts General Hospital)



"Thunderstorm asthma"

- Epidemic outbreaks of acute asthma exacerbations temporally associated with a thunderstorm
 - 1983, Birmingham, England: 106 patients with asthma patients within 2 days after a thunderstorm
 - 2016, Victoria, Australia: 8,000 asthmatics, 8 asthma deaths
 - Similar epidemics in North America, UK, Europe, Australia, Kuwait, etc.

The working hypothesis

- The "perfect storm" theory
 - High pollen/spore stock before the event
 - Updraft winds bring up pollen spores from the ground
 - Precipitation causes pollen to rupture and release small allergenic particles
 - Downdraft winds help release smaller particles to ground level
 - Large number of susceptible people in the storm area

Source: abc.net.au

Figure 1 Open in figure viewer | PowerPoint *Parietaria* pollen bursting under osmotic shock with release of cytoplasmic fragments carrying allergens.

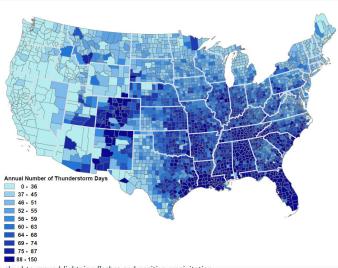
Source: D'Amato et al. (2007)

Primary contributions

- First national-scale study of tstorm-related respiratory complication
 - ullet Event studies of 2.6 million thunderstorms at county \times day level, 1992-2012
 - Track elderly's emergency room (ER) visits for respiratory complaints

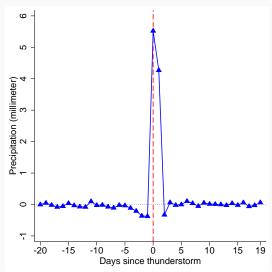
Primary contributions

- First national-scale study of tstorm-related respiratory complication
 - Event studies of 2.6 million thunderstorms at county×day level, 1992-2012
 - Track elderly's emergency room (ER) visits for respiratory complaints
- Main finding: thunderstorm asthma needs no "perfect storm"
 - Can observe spike in respiratory ER visits around the average thunderstorm
 - Larger effect for patients with a history of asthma or COPD


Primary contributions

- First national-scale study of tstorm-related respiratory complication
 - Event studies of 2.6 million thunderstorms at county×day level, 1992-2012
 - Track elderly's emergency room (ER) visits for respiratory complaints
- Main finding: thunderstorm asthma needs no "perfect storm"
 - Can observe spike in respiratory ER visits around the average thunderstorm
 - Larger effect for patients with a history of asthma or COPD
- Mechanism: "calm before the storm"
 - Thunderstorms are preceded by a week of significant slow air motion
 - Meanwhile, significant build-up of particulates pollution
 - Correspondingly, gradual increase of respiratory ER in the week leading to the storm

Data


- Thunderstorms
 - U.S. National Lightning Detection Network (NOAA & Viasala)
 - Near-universal coverage: 98% of cloud-to-ground lightning flashes
 - High accuracy in time (0.5 microseconds) and space (200 meters)
 - ullet We define a "thunderstorm" = any county×day with lighting flashes
- Atmospheric conditions
- Emergency room visits among the eldelry

Annual Number of Thunderstorm Days

 $\underline{\text{Notes}}\text{: Days with cloud-to-ground lightning flashes and positive precipitation}.$

Precipitation around thunderstorms

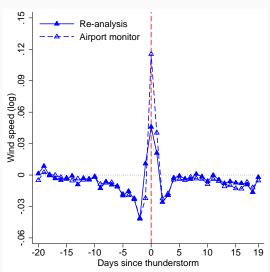
 $\underline{\text{Notes}}\text{: Mean daily precipitation} = 2.90 \text{ millimeter}.$

Data

- Thunderstorms
- Atmospheric conditions
 - Weather: NOAA Global Historical Climatology Network
 - Air pollution: U.S. EPA Air Quality System
 - Pollen counts (61 cities): American Academy of Allergy Asthma & Immunology
- Emergency room visits among the eldelry

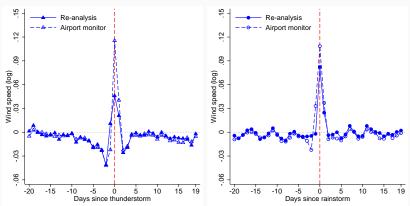
Data

- Thunderstorms
- Atmospheric conditions
- Emergency room (ER) visits among the eldelry
 - Medicare inpatient and outpatient records (100% claims)
 - Covers 98% of U.S. population aged 65+
 - Observe all ER visits, whether or not ended up hospitalization
 - For each visit: patient's county of residence, date of visit, primary diagnosis, preexisting medical conditions

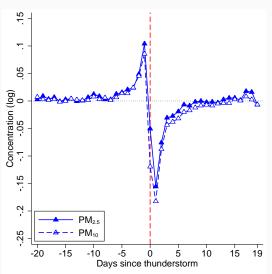

Weather and health around thunderstorms

Event study of thunderstorm

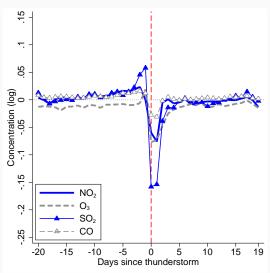
$$\mathsf{Y}_{\mathsf{ct}} = \overbrace{\sum_{\mathsf{d} = [-20, 20]}^{\mathsf{leads \& lags of t-storm indicators}}}^{\mathsf{leads \& lags of t-storm indicators}} + \mathsf{Covariates_{ct}} + \varepsilon_{\mathsf{ct}}$$


- Covariates_{ct} include FEs indicators
 - County FEs
 - Year, month, day-of-week FEs
- Cluster standard errors at the county level

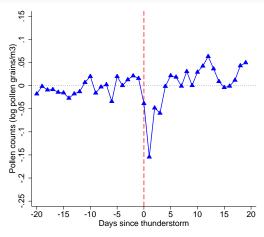
Wind speed around thunderstorms


Notes: Average daily wind speed = 3.51 m/s (near-airport measure).

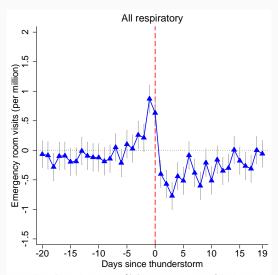
Wind speed around thunderstorms (L) vs. rainstorm (R)


Notes: Average daily wind speed = 3.51 m/s (near-airport measure).

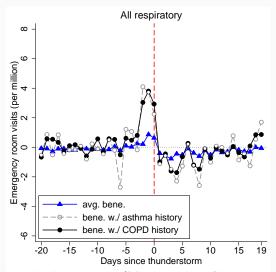
Particulate matter around thunderstorms


 $\underline{\text{Notes}}\text{: Average PM}_{2.5} \text{ (PM}_{10}) = 12.1 \text{ (24.8) ug/m3}.$

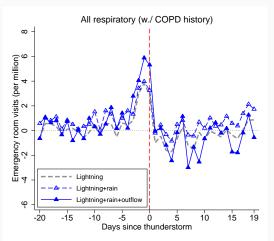
Other (gaseous) pollutants around thunderstorms


Notes: Average $NO_2 = 15.0$ ppm.

Pollen counts around thunderstorms (61 cities)


Notes: Average pollen count = 170 grains/m3.

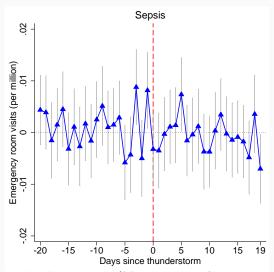
Respiratory ER visits around thunderstorms


 $\underline{\text{Notes:}} \ \ \text{Mean} = 152.7 \ \text{visits per million.} \ \ \text{Range bars show } 95\% \ \ \text{Cls constructed using SEs clustered at the county level.}$

Respiratory ER visits around thunderstorms: COPD patients

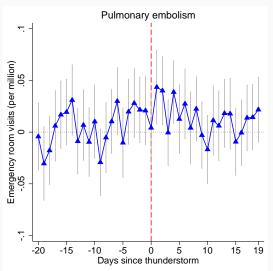
Notes: Mean = 562.9 visits per million. Range bars show 95% CIs constructed using SEs clustered at the county level.

Respiratory ER visits around thunderstorms: Storm intensity

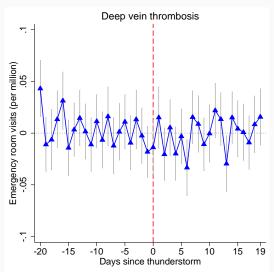


Notes: Mean = 562.9 visits per million. Range bars show 95% CIs constructed using SEs clustered at the county level.

Robustness and falsification checks


- No "build-up" effect for rainstorm (precipitation without lightning)
- Placebo tests using broad diagnoses unrelated to pollution

"Placebo" ER visits around thunderstorms: Sepsis


 $\underline{\text{Notes:}} \ \ \text{Mean} = 0.18 \ \text{visits per million.} \ \ \text{Range bars show } 95\% \ \ \text{Cls constructed using SEs clustered at the county level.}$

"Placebo" ER visits around thunderstorms: PE

 $\underline{\text{Notes}}\text{: Mean} = 3.92 \text{ visits per million}. \text{ Range bars show } 95\% \text{ CIs constructed using SEs clustered at the county level}.$

"Placebo" ER visits around thunderstorms: DVT

 $\underline{\text{Notes}}\text{: Mean} = 2.56 \text{ visits per million}. \text{ Range bars show } 95\% \text{ CIs constructed using SEs clustered at the county level}.$

Conclusion

- Emergency visits for respiratory problems among Medicare beneficiaries were increased in the days surrounding thunderstorms in the U.S., particularly among patients with a history of COPD
- Older patients with reactive airway disease are less sensitive to airway hyperreactivity compared to younger patients
 - The amount of additional acute respiratory illness related to lightning and thunderstorms requiring emergency care is likely higher among children and younger adults